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Abstract 

Following a suggestion by Gssperini and Veneziano, that String Cosmology 

can be reconciled with Inflation and, hence, with the Standard Big Bang, 

we display an analytical solution which possesses four interesting properties: 

(1) it is non-singular; (2) it distinguishes the dynamics of the external scale 

factor, a(t), from that of the internal one, b(t); (3) it exhibits a non-monotonic 

behavior of a(t); and (4) it stabilizes both Newton’s constant and b(t) (the 

latter to a finite, non-vanishing value). The interest of the non-monotonic 

evolution of a(t) consists in the fact that it contains three phases of accelerated 

expansion, contraction and expansion before the final decelerated expansion 

which eventually becomea the Standard Big Bang. The total number of e-folds 

of the three accelerated eras can be calculated and tuned to fit the requests 

of observational astronomy. 
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I. INTRODUCTION. 

String Theory (ST) (see [l] f or a review) is at the moment the most attractive candidate 
for a unified description of the basic constituents in nature and their interactions. Despite 
tremendous progress in our understanding of fundamental strings in the past decade, we are 
still very far from a single quantitative prediction to be observed in experiments. The main 
reason for this unsatisfactory state of affairs is that the natural scale in which string effects 
become important (Planck scale) is much smaller than the scale we can probe in high energy 
scattering experiments. However, as observational cosmology provides a test of fundamental 
physics, since the scales of particle physics become relevant as the universe grows to its 
present size, the most likely arena for a confrontation between ST and experiments lies in the 
cosmological inferences which may be measurable today. To begin with, in general relativity, 
singularities in curved space-times are often unavoidable. In fact, the well-known singularity 
theorems [2] prove the existence of singularities under very general physical properties of the 
matter energy momentum tensor. For example, the Standard Big Bang (SBB) scenario (see 
[3]> exhibits an initial singularity at t = 0. In ST, there are several reasons to believe that 
singularities in target space do not occur. Heuristically, this belief is based on the fact that 
the ST possesses a “minimal length scale” set by the extension of the string itself. One of the 
keys in understanding the meaning of singularities and the minimal length scale in ST may , 
be given by the so-called duality symmetry [4,5]. Duality symmetry is the most important 
string symmetry fiom.many points of view. Let us suppose we have a string propagating in 
a target space Rd-’ x S’ where we have set the radius of the compactified dimension equal 
to R. It is a well known fact that every correlation function A(l,. . . , N) can be written as 
a topological expansion in the string coupling constant 

A(l,. . . 3) = &pl)kg(l,. . . Jv), 
Pr.0 

(1.1) 

where A, is the correlator at &ted genus. Duality symmetry means that A( 1,. . . , Iv) as a 
function of R and glt is invariant under the replacement 

&I a 
Qat -+ - R 9819 (1.2) 

together with an interchange between the momentum and the winding modes of the external 
states. In other words, we are unable to distinguish between small and large R provided 
we change the string coupling properly. Since no string scattering experiment is able to 
tell us whether we are living in a universe with size R and string coupling constant gat or 
in a universe with the dual values, this defines in fact a minimal measurable length at the 
self-dual distance Jd. 

The duality symmetry is not limited to flat backgrounds; its existence was shown [6] 
for curved, time-dependent backgrounds, which is of particular interest in the context of 
cosmological singularities [7,8]. In addition to solve the initial singularity problem, a Theory V 
of Everything must also be able to explain the low energy universe. In particular in describing 
the history of the whole space-time it must be able to make contact with the SBB in the 
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attempt to describe properly the recent evolution of the Cdimensional manifold. The main 
difficulty we have to deal with is that ST is defined on a D-dimensional manifold (with 
D = 26 or 10 for the bosonic and supersymmetric version respectively) while we have 
experience of only three spatial plus one temporal dimensions. Then the theory must be 
able to describe the decoupling of the external and internal manifold. In particular we must 
require MD = M’ x ktDB4 where M4 is the external 4-dimensional space-time and KDv4 
is a (D - 4)-dimensional internal compact manifold with typical physical dimension of the 
order of Planck scale. 

Early attempts to find cosmologically interesting string scenarios able to eliminate the 
singularity in the early history of the universe dates back to the pioneering work of Alvarez, 
Leblanc, Brandenberger and Vafa, Alvarez and Osorio (71, and were based on the hypothesis 
of target space duality from thermodynamical considerations. 

More recently Gasperini and Veneziano [S] and Antoniadis, Hizos and Tamvakis [9] pro 
posed a different dynamical approach to the solution of the singularity problem, based on _ 
Scale Factor Duality (SFD) and the solution of the string effective equations. 

Both thermodynamical and dynamical approaches proposed a suitable scenario in which 
the evolution of the scale factor is monotonic 8s time runs from -oo to +oo, while the 
Hubble parameter is positive and bell shaped as a function of time. 

In this paper, starting from dynamical considerations, we show a different, richer, non- ( 
singular scenario of string cosmology able to make contact with the SBB for the late evolution 
of the universe. In particular, after introducing external and internal scale factors, a(t) and 
b(t), we find that the evolution of a(t) is not monotonic; a contraction phase is present in 
the early history of the universe, while the effective I-dimensional gravitational coupling 
naturally converges to a constant value corresponding to the present value of Newton’s 

s constant. As during the evolution of the universe there are different phases of accelerated 
dynamics, the scenario presented in this paper, in addition to solving the problems of the 
singularity and of the constancy of the fundamental constants, offers a natural framework 
in which to accomodate inflation (which is the solution of the other well known problems of 
the SBB, i.e. horizon, flatness and structure formation) (see, however, Ref. [lo]). 

This paper is organized as follows: in Sect. II we discuss the low energy string effective 
action and the SFD symmetry.-Sect:*III is-devoted to a general~and qualitative description 
of solutions of the string field equations. In Sect. IV we present the general solution to the 
string cosmology equations which interpolates smoothly the dual evolution of the ‘pre-big- 
bang’ and ‘post-big-bang’ phases, where here by big bang (in low case) we mean the epoch of 
transition between the two dual phases. In Sect. V we summarize the main conclusions. The 
Appendixes are devoted to the proof of the non-singular behavior of the solution reported in 
Sect. IV, and to the representation of the same solutions in the Einstein frame, respectively. 



II. LOW ENERGY STRING EFFECTIVE ACTION AND SCALE FACTOR 

DUALITY. 

Let us consider the propagation of a bosonic string in the presence of a background 
consisting of a D-dimensional metric g,,,, (CL, u = 0, 1, . . . , D - 1) and a dilaton 0. It is 
described by the two-dimensional g-model 

scr = J c~xfi [h”*&X”~X”g,,(x~) + ~VPQQP)] , (2-l) 

where ho* is the world-sheet metric tensor and Rc2) is the Ricci scalar constructed with ha*. 
The requirement of conformal invariance of Sb (i.e. the vanishing of the P-functions) leads 
naturally to the determination of the massless modes’ dynamics. In particular we have the 
following tree level effective action for the background fields [ll] 

1 f&c-- 
2tc2 J dDxfie-* (R + a,W’O + c) , (2.2) 

a multidimensional Bran+Dicke (BD) theory. The cosmological constant represents the 
central charge deficit of the theory, c = -2( Dd- D&/3d depending on details of particular 
ST ( Ddt = D, DCGi, = 26 in the bosonic version, Dd = 40, Dhi, = 15 in the supersymmetric , 
version). The effective action (2.2) leads to the following equations of motion 

0 = (My -20$-R-c, (2.3a) 
0 = (R, + V,V,,@) ee4 (2.3b) 

(V, is the covariant derivative and 0 = VAV’ is the D-dimensional d’Alambertian). Now, 
* it is known [6,12] that if the metric and dilaton fields do not depend on the coordinate xi, 
the field equations (2.3) are invariant under the SFD transformation 

g.. * 98s -.. = g;’ ) 
ii --) i = @ - Il.l1g~il, 

(2.4a) 

(2.4b) 

The non-trivial .duality ..tranformation-behavior of the d&r&on field -implies that the 
coordinate-dependent string coupling constant is trasformed like So, = e* q g$(x)g,y’. 
This change of the string coupling constant agrees with the transformation of gft in the 
static case (equation (1.2)) when one considers the genus expansion of the string partition 
function (51. 

This transformation is just a particular case of a more general global O(d, d) covariance 
of the theory (13-151: O(d, d) covariance means that, if the theory is independent of d spatial 
coordinates, the dilaton tranforms as 

c9 * O-lnldetgijl, (2.5) 

and the components of the metric and of the antisymmetric’ tensors mix according to 

‘The third masslee mode of the bosonic string. 



Md-PMll, (2.6) 

where 12 E O(d, d) and 

GT1 -G-‘B 
M= 

BG-’ G - BG-‘B 
(2.7) 

(G z gij and B z Bij = -Bji are matrix representations of the d x d spatial part of the 
metric and antisymmetric tensor, in the basis where the O(d, d) metric is off-diagonal.) 

In reference [l4] it was shown that O(d,d) covariance holds even if the equations (2.3) 
are supplemented by a phenomenological source term corresponding to bulk string matter. 

The importance of SFD in the context of string cosmology is that, when combined with 
time reversal (the most obvious symmetry of the theory), it allows us to associate at every 
phase of ‘post-big-bang’ evolution (for t, < t < +oo) a dual phase, called ‘pre-big-bang’ [S], 
(-00 < t < tc) with a completely different dynamics for the fields. In fact SFD is not a 
simple reparametrization of the fields, nor are its implications trivial. For example, if we 
start with a scale factor a(t) that is expanding, the dual scenario a(t) + a-‘(t) describes 
a contracting universe. When combined with time reversal, SFD maps, for example, a 
background with decreasing curvature to the dual one characterized by a curvature that is 
increasing. 

Finally it is important to stress the necessity of the presence of the dilaton for SFD to 
be a symmetry of the low energy string effective action. In fact for 9 E 0 the action (2.2) 
reduces to conventional general relativity, and we are left simply with the symmetry of time 
reversal. Only the existence of the dilaton field and its non trivial behavior under SFD 

( (equation (2.4)) all ows us to realize the transformation a + a-l. 

III. GENERAL COSMOLOGICAL SOLUTIONS. 

To make contact with observational cosmology, we take the D-dimensional space-time 
as a direct product of the external ~pseudcAXiemannian manifold M4 with an n( = D - 4)- 
dimensional compact Riemannian manifold K,,. We take for M4 a flat F’riedman-Robertson- 
Walker space-time with scale factor a(t), and we assume that the dilaton field Cp and the 
radius 6 of the internal space (which we take to be an n-torus) depend only on the temporal 
coordinate: 

gpv = diag( 1, -a2(t)6,, -b2(t)&), (3-l) 
@ = a(t) (3.2) 

(i,j=1,2,3; a,b=l,..., n = D - 4). With these choices for the fields and adding a source 
term representing a primordial string gas with energy momentum tensor 

=r’ = d&w) t -P(t)@ 9 -q(tht) 7 (3.3) 
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the field equations (2.3) (with c = 0) which now change in2 

(lM92-20@-R=0, 
(Rf: + V,V’@) e-‘@ = n2TL, 

VPT” = 0 P 7 

(3.4a) 

(3.4b) 

(3.4c) 

can be written as 
” 

-2G+&*+3H2+nF2=0, 

c’ - 3H2 - nF2 = n2e4p, 

fi-H&=K2e4p, 

p - J’& = K2e4Q, 

p’+3Hp+nFq’=O. 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

(3.W 
Here we have introduced the Hubble parameters H = jL/a and F = h/b for the external and 

internal space respectively and we have denoted with barred symbols the O(D - 1, D - l)- 
invariant expressions for the dilaton and the matter energy density3 

$=a-3lna-nlnb, WV 
jj = p&f (3.7) I 

(we also introduce p = pa3bn and 4’ = qa3b”.) To solve the system (3.5) we must introduce 
an equation of state for the source term of the form 

P=YP, q=hh 

, with, at the moment, 7 and A arbitrary functions of time. 
Introducing a coordinate time c defined by 

(3.8) 

d( = @dt , (3.9) 
(4 is an arbitrary constant of dimension of length) the forementioned equations can be 
integrated [8,15] to obtain (2~~ = 1) 

i54io=4 i&-g, r 0 Ato (3.10a) 

P = !r2A(c)e’ , (3.10b) 

H= $P-l(a~ + r)e4, (3.1Oc) 

F=, lr’(a, + A)e’ , (3.1od) 

2These three equations are not independent. The third one, in fact, can be obtained by a combi- 

nation of the gradient of the tit and the second. 

3The behavior of the latter under SFD consists in [14] p’ -) I, while for the pressures p/p 4 -p/p 

ami q/p 4 -q/p. 
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where 

r= frdE* J 0 
A= Lq, J 0 

(3.11) 

A(f) = $3 i- (f + <o)~ - 6aHr - W2 - 2naFA - nA2, (3.12) 

Qio, 6, aH, aF are arbitrary constants and 

P = +a$ + no’,), (3.13) 

is negative. 
From (3.10b), to have a positive definite energy density we must require A(<) > 0; also 

the zeroes of A(<) correspond to singularities for the fields. 
Let us consider the simplest case -y = T and X = A, where T and j\ are constants. The 

general solution of (3.10) [16,1?] in a form convenient to our discussion reads 

a(f) = % Kf - f+>(f - f-p f=$ I, -I aH , 
b(f) = 4 Kf - f+>(f - f-)1”” f+ Of I -I * 

H(f) = $4-‘e*0(ail + X) I({ - f+)(f - ~~)I’l/fl~I‘” , 

(3.14a) 

(3.14b) ’ 

(3.k) 

F(f) = $-le*O(aF + if) I(f - <+)(f - ~~)I-“‘lf-+~-” , (3.14d) 

-uO+bH+nUp 9 (3.14e) 

p(f)8) = $l-2e2*osign(A(~)] I(< - f+)(f - <-)((‘-2)/f e I I 
-so 

, (3.14f) 

where 

f* = 5 3aH? + naFi - f0 f ((0 - 3a& - ncrFi)2 - f (co - &-& - &. , (3.15) 

are the two real zeroes of A(f) and 

~=i-3j2-&, 

a0 = f+ + f- - 2foo/r 
f+ - f- ’ 

aH = f+ + f- + 2ak& 
f+ -f- ’ 

bF = f+ + f- + 2aF/c 
f+ -f- * 

(3.16) 
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Other solutions of the system (3.5) are also obtained from (3.14) through SFD. 
The internal and external Hubble parameters have two singularities, at t = <+ and 

at < = f-. For e > 0 (necessary condition to have a positive energy density today) the 
range (&,t+) is not physical because here p becomes negative. The evolution of the scale 
factors depends strongly on the relative sign of aH and q, and of aF and A; but in any csse 
singularities are always present in the curvature, contrary to what stressed in (181 in the 
context of Brans-Dicke theory. In Fig. 1 we report a qualitative representation of a generic 
scale factor for &i/U; > 0 and ai/Ui < 0, where {ai) = (aH,aF) and {wi} = (q,i). 

IV. NON-SINGULAR SOLUTIONS. 

For the solutions found in Sect. III the growth of curvature, of the effective coupling e* 
and of the effective energy density pe’, are unbounded, which is inacceptable in the light 
of the discussion of Sect. I and to phenomenological constraints on the graviton spectrum 
discussed in [S]. The problem is then to find a smooth transition from the pm-big-bang 
phase to the post-big-bang one. For this purpose we exploit a suggestion of Gasperini and 
Veneziano [8]. 

In the vicinity of the Planck scale the low energy string effective action (2.2) does not , 
apply; we expect some modifications. To preserve the symmetry under SFD we must require 
that these corrections are themselves invariant. Following [8] we introduce a self-dual dilaton 
potential V(S) = -Voe2”. The new field equations c8n be still reduced to the form (3.10), 
but with 

p=e2v,- f(3ai + na',) , 

which, unlike (3.13), is no longer necessarily negative. For e > 0 (positivity of the source 
energy density) it is then possible to choose VO > 0 and large such that A(<) does not 
have zeroes in the real field (a proof is given in Appendix A). This implies that there are 
no singularities in the curvature, nor in the effective coupling, nor in the effective energy 
density. 

To solve the system (3.10) we must assign the equation of state of the source term. Being 
interested in solutions which describe a smooth transition from the pre-big-bang era ({ < 0) 
to the dual post-big-bang (f > 0) it is worth looking for self-dual solutions, and in order to 
obtain them, as f goes through zero, the external and internal pressures must change sign, 

PI. so r(f) and Vf> must be odd functions off. Prom phenomenological considerations we 
must also impose the constraint of stationariety of the functions 7 and A for large values of 
I<]. Then, if we introduce the vector of pressure {pi} = (p, q), we must require 

pi * -(J 
a-9 

h,, 

for f < -c, 

P 
it for <>+I:, 

(ui and c constants) with a smooth transition between the two phases. It is evident that 
these properties are shared by a vast class of functions. For example, any of the choices 
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f(f) ds 9 t=W(fN 3 ; @@f(f)) 9 - - s (4.2) 

with f(c) arbitrary, smooth, odd and asymptotically monotonic function of f, would do. 
But, since, from a qualitative point of view [19], the result is independent of the form of the 
functions 7, X for fixed f, for mathematical simplicity, we choose (as in [8]) 

a 

-Y(f) = J& 9 A(f) = 4% 3 (4.3) 

with 9, ;\, &, &. constants. 
Equations (3.10) can be solved analytically if (0 = 0 and fr = (2. In place of the singular 

solutions (3.14) we obtain now (191 

H(f) = $‘eoo (aH + ?Jg) (A(f))-“’ exp{ --$arctan (9)) , (4.4a) 

F(f) = $le+O (w + id?%) (A(f))-“‘exp (-a&wpy)} ) (4.4:) 

,4(C) = e*O (A(f))-l/f exp{--$arctan(‘T-‘)}, 

p(c) = $i2e*O(A(,f))(c-1)/r exp{-$arctan (*)) , 

(4.4c) 

(4.46) 

where 

<=3a&+naFi, (4.5) 
x = (4/3- Eff)C - f2, (4.6) 

and e has been defined in (3.16). For the scale factors, as we are unable to give analytical 
expressions, we have proceeded to numerical integrations. In any case a qualitative informa- 
tion can be easily obtained from the relative Hubble parameters. In particular, if we define 

tHi(f>l = (H(f), F(f)), ‘t 1 is easy to see that if sign(aiwi) = +1 then the Hubble parameter 
Hi never changes sign, while if sign[aiwiJ = - 1 then 

sign ki (If1 < /@)I = -sign ki (If I > j/w)] . 
i (4.7) 

Therefore, if for large ](I, Hi is positive (corresponding to a background that today is 
expanding), for c near zero we have a transition expunsion-contnzction-ezpumion as depicted 
in Fig. 2. 

_ 

These solutions generalize in a non-trivial way the ones obtained in [8]. The latter, in 
fact, can be easily recovered if we set a21 = ap = 0, q = -i = l/(3 + n) and 4p = ff. 
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The presence of a contraction phase, very suggestive in itself, has interesting consequences 
on the present structure of the observable universe. It was recently stressed in [16] that every 
kind of accelerated evolution, whether during expansion or contraction, naturally solves the 
kinematical problems of the SBB. Moreover, when expressed in terms of conformal time, 
the contraints for successful inflation are the same for expansion and contraction. Then 
our solution offers a natural scenario capable of solving the flatness, horizon and structure 
formation problems of SBB, without introducing an ad hoc inflaton. As for the number of 
e-folds of accelerated contraction, we have 

Af zz f’ H(t) dt = (4.3) 

with &, = -dm h g t’ t e ne a rve zero of H(f) and the integrand W(f) E, 2(aH + 
I’)/a(<). Although the latter integral cannot be performed analytically, it can be seen that 
W(c) has the same shape of H(f) and, for the period of accelerated contraction, a very good 
fitting is a linear interpolation (we have a correlation coefficient R = 0.99.. .). Then we get 
for the linear fitting function @ in the range f E [&, 0] 

E(f) = -W(O) $- 1 ) 
( ) in 

P-9) 

and 

N = bW(O)fin 9 (4.10) 

where 

W(0) z W(f = 0) = wf + Tlfl I 
4PVs - (3y2 + ni2)ff - 2(3a& + naFi)lfl 1 - 3a$ - nas 

. (4.11) 

We can choose aH and aF to tune hf to any desired value. But the contraction phase is 
not the only period of accelerated evolution of the external space. For sign[a&] = -1 
three different phases of accelerated evolution (see Fig. 3) follow each other during the early 
history of the universe. Then, in addition to solving naturally the kinematical problems 
typical of the SBB, from the point of view of structure formation, our scenario gives rise to 
a sort of multiple inflation (but with a single field) capable of breaking the scale invariance 
of the fluctuation power spectrum, a possible solution to the problem of large scale power 
in galaxy distribution (201. 

Furthemore, in order to make contact with observational cosmology, in addition to ex- 
plaining why the universe is flat, the entropy is so high, etc., we must also be able to explain 
why the fundamental constants are effectively constants. In fact in string cosmology the 
gravitational coupling is dynamical. When reducing the theory from D to four c:mensions, 
we get that the 4-dimensional “Newton’s constantn is proportional to the inverse of the 
volume of the internal space times the inverse of the coupling between the scalar field and 
the Ricci scalar (GN N Pe4): in general, the latter expression is hardly constant, while 
Newton’s constant must be “constant” at least from nucleosynthesis onward 1211. Really 
this is the most difficult problem in multi-dimensional and scalar-tensor theories. 
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If we look at the asymptotic behavior of solutions (4.4), then we can realize that our 
scenario has just this additional bonus. It is in fact easy to see that for very large < we have 

a(f) - {2+/t ( (4.12a) 

b(f) - f2ilc, (4.12b) 
,w hr <2(3i+nX--l)/r 

9 (4.12~) 

and 

GN cy b-ne* N f%1-3$)/( . (4.13) 

Then for a universe with radiation in the external space T = 5, GN becomes asyrnptoti- 
tally constant (see Fig. 4). What is really surprising is that Newton’s constant stabilizes 
indipendently of the dynamics of the internal space, which asymptotically can expand (for 
i > 0), contract (for i < 0) or approach a constant value (for i = 0; the most attractive 
possibility). For what concerns the asymptotic dynamics of the external space, the choice 
+=$ naturally leads to the typical behavior of Radiation Dominated model: a(t) w t1i2. 

The same asymptotic scenario is shared also by the singular solutions (3.14), because 
the dilaton potential strongly modifies the field’s dynamics only around I{1 m 0, becoming ’ 
rapidly uninfluential as f grows. 

V. CONCLUSIONS. 

The combination of Einstein’s general theory of relativity and of the Copemican princi- 
ple naturally leads to the formulation of the SBB. Although in the last decades the SBB has 
been strongly confirmed by astronomical observations, it still presents some “conceptual” 
difficulties: the existence of an initial singularity and the well known kinematical problems 
(horizon, flatness, structure formation). It is a common belief that these problems can 
be solved when a consistent quantum*theory of gravitation will be formulated. Today ST 
seems the most plausible attempt to quantize gravity, and then it is very tempting to study 
its implications on the early evolution of the universe. Foremost in supporting the belief 
that string cosmology can solve the singularity problem, is SFD symmetry, one of the most 
important symmetries of ST. It means that if a(t) solves the string equations then also 
a-‘(t) is a solution of the same dynamical system, thus introducing a minimal length scale. 
Furthermore ST modifies the commonly accepted lore: the present decelerated expansion is 
preceded by a dual phase in which the evolution is accelerated. The smooth passage between 
the two asymptotic phases may be realized by a period of accelerated contraction. Because 
accelerated contraction is as efficient as accelerated expansion to solve the kinematical prob- 
lems of the SBB, the ST scenario presents multiple episodes of inflation. The last difficulty 
we are able to cope with is to justify the constancy of the 4-dimensional Newton’s constant -- 
without requiring the introduction of a mass term for the dilaton or the formulation of a least 
coupling principle (22). In fact the low energy string effective action is a multi-dimensional 
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scalar tensor theory of gravity, presenting then a dynamical gravitational coupling. Astro- 
nomical observations imply however that &N/G N 5 lO’“se~-~ [21]: a realistic model must 
describe the spontaneous stabilization of the Newton’s constant, which we obtain. 

Obviously the scenario presented here is basically a toy model, which needs more the- 
oretical support. For example we should justily the form of the dilaton potential and the 
equation of state for string sources in curved backgrounds. Nevertheless we want to stress 
that some of the positive and new results presented in this paper (presence of a primordial 
contraction phase, stabilization of the fundamental constats, convergence towards the SBB) 
are common both to non-singular and to more conventional singular scenarios, representing 
then a element in favour of string cosmology. 

The development of the subject and the deeper study of the astrophysical implications of 
an early dynamical gravitational coupling and contraction phase, in addition to the sponta- 
neous compactification of the internal dimensions, may represent a solid benchmark to test 
the theoretical predictions of ST. 
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APPENDIX A: DOES A(<) VANISE? 

In this Appendix we want to prove that the introduction of the dilaton potential, in 
Sect. IV, allows us to eliminate the singularities~in the fields and in the energy density of 
the- string bulk matter. To show this, it is enough to study the zeroes of A({); we will be 
able to avoid the singularities if A(f) # 0 for f real. We have (fa = 0 as in Sect. IV) 

A(f) = Q - 2c4e + f: + ef2, (Al) 
where we have defined 

R = 4p - (1 - c)ff ) 

p=eq)-fu, 

a=3a$+na2f 
1 

<=3a~q+na&, 

r=1-3,j.2-nX2. 

As we have yet stressed in Sect. III, we must require e > 0 to have a positive energy density. 
It is immediately seen that A(f) = 0 implies 

2p + 2(& - 2C2)f2 + n2 - 4c2g = 0. 642) 
If we introduce 
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y=f2, 

a=&-2C2, 
b = R2 - 4c2ff, 

equation (A2) reduces to 

c2y2+2uy+b=0. (A3) 

Because y = t2, A(<) d oes not vanish in the real field if and only if one either of the following 
conditions is satisfied: 

a) 6 E a2 - e2b < 0, 

b) -a+df<O ifa>O, 6>0. 

For what concerns condition a) we have 

f5 = (dl - 2<2)2 - c2(R2 - 4C2G) ( 

= -4~2(4cPV, - T2) , 

where 

72 = eu + c( 1 - E)f: + c2 + PC: > 0 

(remember that 0 < e < 1). Then b < 0 implies 

72 Vo>-g>O. 

Now with condition b). We must take 

72 
& >0 and then VO 5 q,p~, 

and 

COO, 
-a+&<O. 

Let us start to study the condition u > 0. It implies 

42 - 2(2 = c[4v,e2 - u - (1 - e)Q - 2c2 > 0, 

and then 

r12 vo>s>o, 
where we have defined 

f12 = ~a+r(l-of:+2C2=iL+C2-EZf:>O. 

(A4) 

(A5) 

(A6) 

w 

(A8) 

w 
m 
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To make conditions (A6) and (A8) compatible we must require ‘12 < 7*, which means 

c* < 2t:. (AW 
If inequality (AlO) is not verified, we have q2 > r* and then the condition a > 0 automat- 
ically implies b < 0, which means that A(f) never vanishes in the real field for condition 

4. 
For what concerns the second condition, Jd < a, we have 

16e2V,2p4 - 8c(q* - 2C*)V,t’* - 4C272 + q4 > 0. (All) 

Because 

e* v, = - 
4EeL ’ VW 

with B* = q2 - x2 f 2IC41 I, we must require 

4d@* < 8, and 4&i? > 8,. (fw 

Summing up, condition b) is equivalent to the following conditions on Vo 

$<4eV&72, - (A14a) 

e+ < 4ev,P, (A14b) 

4ev0t?< 8,. (A14c) 

, Because C* < c*<f we have also 

and then, conditions (A14) reduces to 

o< 
72 

&<vo<- 
- 4&Q - (AW 

In any case, the request that A(<) never vanishes (conditions a) and b)) automatically implies 
V, > 0 (inequalities (AS) and. (A15)). 

APPENDIX B: REPRESENTATION IN THE EINSTEIN FRAME. 

It is well known that scalar-tensor and non-linear gravity theories can be reformulated 
in a more conventional framework: Einstein gravity plus a minimally coupled scalar field 
[23]. We have only to perform a Weyl resealing of the metric tensor, gPv + O*gPy. 
we must take [ll] 

For ST _ 

R2= . p/P-~) w 
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Then the action (2.2) reduces to 

S --~/dD~~IR-~(aQ)*+~~-~‘}. (W 

Although the BD frame,4 seems the most natural in ST, it is also interesting to study 
what happens to solutions (4.4) when we perform the Weyl resealing (B1)5. 

Recently it was stressed [16,17] that the ‘pm-big-bang’ era of the BD frame is naturally 
mapped to an accelerated contraction phase in the Einstein frame. But this is not true in 
general. The situation is more complex and needs a more accurate analysis. We will deal 
with non-singular solutions, although for the asymptotic behavior the same results can be 
applied to solutions (3.14) as well. 

Because we have not an analytical expression for the scale factor, we can extract quali- 
tative informations looking at the dynamics of the transformed Hubble parameteP. 

After performing the Weyl transformation (Bl) we get (a prime denotes differentiation 
with respect to c) 

a’ a’ 
-4 - 
a 0 

e*/(n+*) 
= 

a E n-k2 w 

and then, substituting the equations (3.10) [19], 

a’ , (3 2e4’(“+2) 
a E = (n + W(f) 

[(n - l)alp - nap + f + ((n - l)‘v - &J/G] , w4 

6’ 

0 

2e4/(“+*) 
iY E= (n + W(f) 

2oF - 3aH + f + (2i - 3y) d=j . (B5b) 

Let us introduce 

{Ai} = ((n - l)CQ - nap, -3o~ + 2o.F) , WI 
{Bi} = ((n - l)? - ni , -3+7 + 2i) . WI 

4The representation in which the scalar field couples non -minimally to the scalar curvature, action 

(2.2) 

sFor a review on the debate about the two frames see [24] 

6 We could have had informations about the correct (qualitative and quantitative) dynamics of the 

scale factors by numerically integrating the equations. But, because there are many free parameters 

which strongly determine the evolution, it is more interesting to study the shape of the Hubble 

parameter. 
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Then the asymptotic behavior of the scale factor depends on the sign of t/i{1 + Bi: for 
</Jcl + Bi > 0 we have expansion, c/j<1 + Bi < 0 means contraction, while c/l{1 + Bi = 0 
correspond to a stabilization of the scale factor. The Hubble parameter changes sign in the 
interval 

-Ai - {A? + (Bf - l)(A; - B,zf;) f + (Bf - l)(A; - Bfc;) 
1 - Bf <f< 1 - B; 1 uw 

if A: + (Bf - l)(Ag - Bzff) > 0. Then it can happen that we start in the string frame 
with a scale factor which presents a transition expansion-contraction-expansion, but in the 
Einstein frame it experiences a monotonic expansion. It is then evident that it is not 
generally true that the expanding pre-big-bang phase is always converted to a contraction 
by Weyl resealing, as stated in [16] . It happens only for homogeneous and isotropic models, 
and when Bi - 1 < 0 with wi > 0 (we remember that {wi} = (y,i)). It is worth to notice 
that after the Weyl resealing (Bl), we have eliminated the non-minimal coupling of the 
scalar curvature with the dilaton, but we have still a theory with dynamical gravitational 
coupling, because of the presence of the volume of the internal space. So, if we want that the 
two representations be in accordance with observational constraints about the variability of 
the 4-dimensional Newton’s constant, we must impose the two conditions ;I = 5 and i = 0. 
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